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ABSTRACT

This report shows that cyclic spectral analysis, as a general tool for signal spectral analysis,
is much superior to more conventional spectral analysis. Three major advantages are
pointed out: (1) its signal’s discriminatory capability enables signal selectivity (even for
highly corrupted environments); (2) it provides a richer domain for signal analysis; and (3)
the theory of spectral correlation allows a much more complete mechanism for modeling
communication signals in several applications. A conceptual view of the cyclic spectrum
is presented along with a working example. A strong mathematical foundation for the
theory of spectral correlation involved in cyclic spectral analysis is provided. Finally,
investigations are made on some interesting applications where exploitation of the inherent

redundancy associated with spectral correlation can be used advantageously.

RESUME

Il est démontré dans ce rapport qu’en tant qu’outil général d’analyse spectrale de signaux.
'analyse spectrale cyclique arbore une nette supériorité sur d’autres approches plus con-
ventionnelles d’analyses spectrales. Trois de ses principaux avantages y sont soulignés:
(1) la capacité de discrimination de signaux immanent de 1’analyse spectrale cyclique
permet la sélectivité de ceux-ci (méme s’il s’agit d’environnements spectraux hautement
corrompus par bruits de fond et interférences diverses), (2) I'analyse spectrale cyclique
offre un domaine plus riche facilitant I’analyse de signaux, et (3) la théorie de corrélation
spectrale jouit d’'un mécanisme beaucoup plus complet en ce qui a trait a la modélisation
de signaux utilisés en télécommunications pour de nombreuses applications. Une vue
conceptuelle du spectre cyclique est présentée a ’aide d’un exemple. Ensuite, la théorie
de corrélation spectrale nécessaire a ’analyse spectrale cyclique est formulée a 'intérieur
d’une solide base mathématique. Finalement, on examine quelques intéressantes applica-
tions dans lesquelles 'inhérente redondance associée a la corrélation spectrale peut étre

avantageusement exploitée.
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EXECUTIVE SUMMARY

Most signal processing methods deal with signals assumed to be statistically stationary.
However, in communication systems, most manmade signals do not meet the stationarity
assumption and are in fact better modelled as cyclostationary processes where the statis-
tical parameters of the signals are assumed to be varying in time with single or multiple
periodicities. This motivates the needs for cyclic spectral analysis, allowing identification
of underlying periodicities.

In this report, the cyclic spectral analysis, as a general tool for signal spectral
analysis, is shown to be much superior to more conventional spectral analysis. Three

major advantages are pointed out:

1. its signal’s discriminatory capability enables signal selectivity (even for highly cor-

rupted environments);

2. it provides a richer domain for signal analysis and therefore more information about

the signal; and

3. the theory of spectral correlation allows a much more complete mechanism for mod-

elling communication signals in several applications.

A conceptual view of the cyclic spectrum is presented along with a working exampie which
demonstrates most of these advantages. A strong mathematical foundation for the theory
of spectral correlation involved in cyclic spectral analysis is provided.

The objective of all cyclic spectral analysis applications is to exploit signals
spectral redundancy to improve the accuracy and reliability of information extracted
from the measurements of corrupted signals. Some of the most promising applications are
investigated: detection, classification, parameter estimation, TDOA estimation. direction

finding, and frequency-shift filtering for signal extraction.
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1.0 INTRODUCTION

Most signal processing methods deal with signals assumed to be stastistically stationary.
Hence, the signal is presumed to have statistical parameters (i.e., mean, autocorrelation,
etc) that do not vary with time. Unfortunately, this stationarity assumption is not ap-
plicable to most manmade signals encountered in a variety of areas such as the one of
particular interest in this paper: communication systems. In communication systems, the
statistical parameters of manmade signals usually vary with time and in many cases vary
periodically with time. Examples of this include: sine carriers modulated in amplitude,
phase, or frequency, periodic keying of the amplitude, phase, or frequency in digital mod-
ulation systems, repeating spreading codes, etc. In many cases, the performance of signal
processors can be improved considerably by identifying and exploiting underlying period-
icity. The approach discussed in this report is to model the signal as a cyclostationary
process where the statistical parameters of the signal are assumed to be varying in time
with single or multiple periodicities.

The first part of this paper, Section 2, presents a conceptual view of the cyclic
spectrum through a working example. The following section, Section 3, investigates the
numerous advantages of using the cyclic spectrum over the conventional spectrum. Section
4 is devoted to a mathematical description of the basis of the spectral correlation theory of
cyclostationary signals and the cyclic spectrum. An analysis of the effects of some basic
signal processing operations on the cyclic spectrum is discussed in Section 5. Finally,
the last section, Section 6, gives a brief overview of some interesting applications where
exploitation of the inherent redundancy associated with spectral correlation can be used
advantageously. This includes signal detection, classification, time-difference-of-arrival
(TDOA) cstimation, spatial filtering, direction finding, and frequency-shift filtering for

signal extraction.

2.0 A CONCEPTUAL VIEW OF THE CYCLIC SPECTRUM

Most books on signal processing when dealing with communications signals typically as-
sume them as being stationary, i.e., signals whose statistical parameters, such as mean
and variance, do not vary with time. The signal is then modeled as a one-dimensional
autocorrelation function from which the power spectrum density (or PSD) is gencrated
by computing the Fourier Transform (FT) of the autocorrelation function. However, it
is known that most manmade signals encountered in radio communication systems are

in fact cyclostationary [11], that is. statistical parameters are periodically or cvclically




Table 1: Signals Parameters

BPSK-1 BPSK-2
# of samples 32768 32768
symbol rate 1/32 1/16
carrier frequency 3.3-1/32 4-1/32
power 0dB 0dB
pulse type raised-cosine | raised-cosine
roll-off factor 1.0 1.0

stationary. Modeling the signal as cyclostationary results in a two-dimensional autocorre-
lation function where the extra dimension is denoted a, i.e., the cycle frequency at which
the one-dimensional autocorrelation function has been computed. For each «, a F.T.
of the cyclic autocorrelation function produces a cyclic-spectrum-cut for that particular
frequency separation a. More easily visualized in the spectral domain, Figure 1 shows
all the steps involved in producing one cyclic-spectrum-cut for a = fy. In Figure 1(a),
the magnitude of the F.T. with frequency resolution 1/T (where T is the duration) of
a signal z(t) at t =t; is shown, i.e., |X7(t, f)|. Figure 1(b) and Figure 1(c) show two
frequency-shifted versions of the original spectrum shifted by fo/2 and — f5/2 respectively.
The spectral correlation measure is shown in Figure 1(d) and is simply the product of the
two frequency-shifted versions. Since the statistics of the signal are not stationary, the
above process is repeated for {t = t,t5,t3,...,tn | (t1 < t2 < t3 < ... < tn)} and the results
averaged over time. The result is denoted S;”T:f°( f), which signifies a cyclic-spectrum-cut
at o = fo. Repeating this process for other values of o gives rise to a three-dimensional
cyclic spectrum plot with the three axes being: f, a, and magnitude. Note that at o = 0,
the cyclic-spectrum-cut corresponds to the original spectrum, the conventional PSD, since
the spectrum completely correlates with itself.

A working example will illustrate the concept of cyclic spectral analysis. Two .
Binary-Phase-Shift-Keying (BPSK) modulated signals having the parameters shown in
Table 1 are used. The signal is corrupted by additive white Gaussian noise with a total
power of 5 dB over the Nyquist band.

Applying conventional spectral analysis using frequency-smoothed estimation !
(with = 3% width smoothing window), the conventional PSD’s of BPSK-1, BPSK-2.
BPSK-14+BPSK-2, and BPSK-1+BPSK-2+noise are shown in Figure 2.

'Instead of using time-averaging as explained earlier, averaging in the spectral domain is used in this
case. Note that the smoothing window represents the spectral width that is averaged (see {17], [35]).
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Figure 1: Steps involved for producing a cyclic-spectrum-cut at a = f
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Figure 2: Conventional PSD examples




[t is important to note that in this and following examples the frequency has
been normalized with respect to the sampling frequency so that the total frequency span
is 1, with f ranging from -0.5 to 0.5. In Figure 2, for clarity, only a portion of this range
is shown i.e., f ranging from -0.188 to 0.188 (-6 times the symbol rate of BPSK-1 to +6
times the symbol rate). Additionally, all plots are shown with a linear scale.

Some comments can be made about the plots shown in Figure 2. Between
Figure 2(a) and Figure 2(b), one can observe some differences: the peaks are not centered
at the same carrier frequency; and the bandwidths are different. In order to find out
the symbol rate, an approximation of the bandwidth of the signals can be made if and
only if it has been assumed that only one signal is present at a time (in either (a) or
(b)) and that one has an idea of the type of modulation one is looking at. Figure 2(c) is
intended to demonstrate the spectral overlapping that may easily occur between signals.
The PSD of the two added BPSK signals is somewhat unusual. It is not apparent from
this plot that two BPSK signals are present at two different carrier frequencies and two
different symbol rates. Rather, this looks like a single unusual signal instead of two BPSK
signals. In other words, two BPSK signals can not be distinguished using the conventional
spectral analysis. In Figure 2(d), the PSD of the same two BPSK signals with band limited
Gaussian noise added shows the raised noise floor that results compared to the preceding
noise-free spectrum.

Applying the more powerful tool known as the cyclic spectral analysis, the four
cyclic spectra analogous to PSD’s of Figure 2 are shown in Figure 3. Again, the sampling
frequency has been normalized as before. The front axis represents the ordinary frequency
(the f-axis) and the side axis denotes the cycle frequency axis, also called a-axis. Here
again, only a portion of the complete spectrum is used in order to better see the features
of interest: the f-axis ranges from -6 times the smallest symbol rate (1/32) to +6 times
1/32 while the a-axis ? ranges from -12 times 1/32 to +12 times 1/32. Note also that the
cyclic spectrum has been computed for 120 discrete a-values from -0.375 to 0.375. All
plots are shown with a linear scale.

For all the plots in Figure 3, the conventional PSD is easily recognizable as the
cvclic spectrum at the zero cycle frequency. The peaks in the cyclic spectrum reveal the
cyclic features one would theoretically expect from a BPSK modulated signal having the
parameters as described in Table 1. Denoting the symbol rate f, and the carrier frequency

f. then, for such a BPSK modulation, the signal peaks will be present when

a = fo. f==f

*The total span on the a-axis is always twice the one of the f-axis (see [17]).
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(a) BPSK-1 (b) BPSK-2

{c) BPSK-1+BPSK-2 (d) BPSK-1+BPSK-2+noise

Figure 3: Cyclic spectrum examples
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a=2f., f=0,
a=2f. % fo, f=0.

Note that since the signal is real, the cyclic spectrum is symmetric with respect to the a-
axis (as well as to the f-axis). Clearly, the cyclic spectrum provides a lot more information
about the signal than the conventional PSD. Looking at Figure 3(a), the cyclic features
of the BPSK-1 signal are easily determined (a« = 1/32, f = £3.3 x 1/32;a = 2 x 3.3 x
1/32,f = 0;a =2 x 33 x1/32+£1/32, f = 0) and similarly in Figure 3(b), the cyclic
spectrum of BPSK-2 reveals its cyclic features (a = 1/16, f = +4 x 1/32;a = 2 x 4 x
1/52, f =0;a =2 x 4 x 1/32 £ 1/16, f = 0).

Since the cyclic features are discretely distributed in the cyclic spectrum, one
can recognize the two BPSK signals with two different symbol rates and two slightly
different carrier frequencies by simply using appropriate pattern recognition techniques
in Figure 3(c). The two BPSK signals appear very clearly in the cyclic spectrum and are
therefore distinguishable. The effect of adding noise to the signals to the cyclic spectrum
is shown in Figure 3(d). The most interesting result is the fact that since the background
noise is not cyclostationary, it has no cyclic features and therefore only appears at the zero
cycle frequency. Outside the zero cycle frequency, all the noisy components not present
in Figure 3(c) are due to the measurement noise, that is the noise due to the fact that the
cyclic spectrum is estimated from a finite number of samples. As can be seen however,
the cyclic features still remain prominent even when 5 dB of noise has been added to the
two 0 dB BPSK signals.

3.0 CYCLIC SPECTRUM ADVANTAGES OVER CONVENTIONAL
SPECTRUM

This section analyses the various advantages of using the cyclic spectrum, as described in
the previous section, over using the conventional spectrum in order to analyse and detect

a number of features contained in a signal (cf [19]).

3.1 DISCRIMINATORY CAPABILITY

One nice property of the cyclic spectrum is that signal features are discretely distributed
in cycle frequency in the cyclic spectrum. Note that this is satisfied even in the case of
a signal having continuous distribution in the power spectrum. It follows that signals
with overlapping features in the power spectrum can have non-overlapping features in the
cyclic spectrum. For instance, background noise such as Gaussian noise has no features

at any cycle frequency other than at zero (o # 0). This important result means that
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a cyclic spectral analysis at a non-zero cycle frequency of a signal of interest reveals its
cyclic features without any component due to the noise. In fact, the only noise will be
due to measurement noise or from other interference signals having the exact same cycle
frequencies. The measurement noise is due to the way the cyclic spectrum is computed
and tends asymptotically to zero as the collect time measurement increase. In the case
of interferers, the signal of interest will generally have features at other cycle frequencies
than those of the interferers. Thus, analysis of the cyclic spectrum at those particular
cycle frequencies will show these features without any component due to the interference.

In brief, the cyclic spectrum allows signal separation.

3.2 A RICHER DOMAIN FOR SIGNAL ANALYSIS

The cyclic spectrum (magnitude and phase) reveals information about the signal that
is not easily identifiable in the conventional spectrum. This information includes signal
parameters like carrier and pulse-train frequency, bandwidth, phase and timing informa-
tion, baud and frequency-hopping rate, etc. In short, it provides much usefvl information

about the signal.

3.3 THEORY UNDERLYING THE TECHNIQUES

Since most man-made signals are cyclostationary, a much more complete mechanism for
modeling communication signals is provided through the theory of spectral correlation
functions when compared to analysis of the power spectrum. Hence, a more powerful
model is used and conventional spectrum analyzers and feature detection techniques can
both be theoretically studied and analyzed in terms of the cyclic spectrum. Moreover,
based on the cyclic spectral analysis, optimal parametric approaches as well as feature

detection and nonparametric approaches used to detect and analyze signals can be devised.

4.0 SPECTRAL CORRELATION THEORY

After having looked at the conceptual description of the cyclic spectrum, this section will

state mathematical results related to spectral correlation theory (cf [14], [17], [22]. and

[51)-

4.1 CYCLIC AUTOCORRELATION FUNCTION

As mentioned in the introduction, a signal modeled as cyclostationary will have probabilis-

tic or statistical parameters varying periodically with time. The symmetric conventional
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autocorrelation function of a time series z(t) is given by
R(t+7/2,t—7/2)=(z(t + 7/2)z*(t — 7/2)) , (1)

where z*(-) denotes the complex conjuguate of z(-) and (-} is the time-averaging operation

T/2
_l — 2
lmT/T/z 2)

If z(t) contains more than one source of periodicity and the periods are all different (i.e.,
no fundamental period of which all periods are integral divisors), then the process is said
to be almost cyclostationary because its parameters are almost periodic with time. Hence,

the autocorrelation function can be expressed by using the Fourier series representation
R.(t+71/2,t—7/2) = zR" )e?zmat (3)

where RZ(7) represents the Fourier coeflicients depending on the lag parameter 7 and is
given by
R:(7) = <R,(t +7/2,t - T/2)e'j2"°'t> . (4)

Assuming z(t) is a cycloergodic process 3, then (4) reduces to
Ra(r) 2 (a(t + 7/2)z"(t — 7/2)e~1) | (5)

where RS(7) is called the cyclic autocorrelation function.

When the cycle frequency a = 0, then (5) becomes the conventional autocor-
relation function, i.e., R)(7) = R.(r) which is the autocorrelation function of a signal
assumed to be wide sense stationary. It is observed that R2(7) for a # 0 is the ac compo-
nent of the lag-product waveform z(t 4 7/2)z(t — 7/2) for each value of 7 corresponding

to sine-wave frequency a.

4.2 CYCLIC SPECTRUM

From the Wiener relation, the conventional power spectrum density is obtained by

S:(f) = F{RA} = [ Ra(r)eI7dr. (6)

3This means that ensemble averages equal time-averages (using synchronized averaging) of a cyclosta-
tionary time-series signal (see [17])




Similarly, it can be shown that

Ri(r)e™*/7dr (7)

e o]
r

S2(f) = F{R2(} = |

o0

which is called the cyclic Wiener relation. It is easily seen that (6) is a particular case
of (7), i.e., when a = 0. S2(f) found in (7) is called the cyclic spectral density function
or the spectral correlation function. For brevity, it will be referred to as cyclic spectrum.
Let’s define

u(t) = z(t)e™ ™, (8)

and
v(t) = z(t)et ™, (9)

Recall from the Fourier transforms properties that multiplying a signal by e*’™t shifts
its spectral content by +a/2. We can therefore express R2(7) in terms of a conventional

cross-correlation, i.e.,
Ru(7) £ (u(t + 7/2)0"(t = 7/2)) = R3(7). (10)

From this definition, one can state that z(t) exhibits second-order periodicity if
and only if frequency-shifted versions of z(t), namely u(¢) and v(t), are correlated with
each other. This will be the case if and only if RZ(7) is not identically zero for some
a # 0. From (10), RZ(7) can be normalized to give the temporal correlation coefficient
v¥2(r) which provides a measure of the strength of correlation between u(t) and v(t) and

is defined as

R2(r
w2 =g, ()
where R.(0) is given by
R:(0) = (lu(@) b(O)F)* . (12)
Similarly, the spectral autocorrelation coefficient is given by
(o S'u.u
HOE Y) (13)

[Su(F)Se(F)]F
where S, (f) = 52(f), Su(f) = So(f + @/2), and S,(f) = S(f — a/2). Clearly. p2()

can also be expressed as

a 5z(f)

. (14)
[S(f + @/2)S:(f — a/2))

pe(f)

(ML
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From the above discussion, some conclusions can be drawn. A signal z(t) for
which the autocorrelation function R.(7) exists and is not identically zero is qualified
as being stationary (more precisely wide-sense stationary). The terminology has to be
refined in order to distinguish between stationary signals that exhibit cyclostationarity
and those who do not. The case for which R2(7) = 0 is said to be purely stationary (of
second-order) whereas when R3(7) # 0, it is said to be cyclostationary (of second-order).
Any a for which R%(7) # 0 1s called a cycle frequency and the special condition & = 0 can
be considered as a degenerate cycle frequency (e’ = €® = 1 — degenerate sinusoid).
Thus, stationary signals can also be cyclostationary if it contains a cycle frequency other

than zero. The discrete set of cycle frequencies is called the cycle spectrum.

4.3 DEGREE OF CYCLOSTATIONARITY

An important measure of the strength of cyclostationarity of a signal z(t) is denoted DCS
(degree of cyclostationarity). Two measures of DCS, one which is frequency-decomposed

and one which is time-decomposed are defined respectively as
ad) a =
DCS; =2 1p2(NHI, (15)

and
DCSe & 2(7)f. (16)

Also, a third measure of DCS known as cycle-frequency-decomposed measure of DCS is

defined as

co o 2 oo o 2
pege & [ 1SN df _ [% |Re(r) dr .

FZ SN df [ IRUT) P dr

Moreover, this latter measure can also be expressed as

pege = Joe DCS2dr _ [%, DCSFS(f +a/2)S(f — a/2)df
S 3(r)[ dr 2518201 df '

(18)

Finally, from the cycle-frequency-decomposed measure of DCS, one can find the degree

of cvclostationarity, i.e.,

o' a 2
|2(7) dr] o

Y o ffomlsg(f)lzdf] [I—oo
DCS = DCS° = =
oz;m %[filﬂ(f)lzdf o%e:o I |RA(T) dr

o
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or

Tago ([ IS2OPdf| T [/ [RE(7) dr]
[ 1S2(A) df %50 |RY(7)I* dr
It is easily observed that if DCS = 0, then the signal is purely stationary but if the

DCS =

(20)

process exhibits cyclostationarity, then DCS > 0.

5.0 EFFECTS OF BASIC SIGNAL PROCESSING OPERATIONS ON
THE CYCLIC SPECTRUM

Three different operations are considered, i.e., filtering, multiplication, and time sampling.
The results come from (17}, [5], and [10] and are reformulated in the following.

5.1 FILTERING

Let z(t) be defined as

2(8) = h(t) x 2(2) é—/ h(u)z(t — u)du, (21)
where z(#) i< the incoming signal and h(t) is the impulse response of a linear time-invariant
(LTI) filter. The well-known effect of filtering on the conventional spectrum of z(t) is

expressed as

S:(f) = |H(f)I* Sz(f) - (22)

The extension to the input-output cyclic spectium relation for LTI filtering is given by

S:(f) = H(f + a/2)H*(f — a/2)57({), (23)

where H(f) is the Fourier transform of h(t). Note that this latter expression inciudes
(22) as a special case.

Now, let’s assume that h(t) is replaced by k(t,u) to denote a periodic time-
variant filter impulse response. The impulse response of the output is expressed as

2(t) = /°° h(t, u)z(u)du. (24)

-0

But since h(t,u) is a periodic impulse response function, then it can be expanded into the

Fourier series

h(t+1,t) =Y ga(r)e?*™", (25)
JEA

12




where gg(7) is given by
gs(r) = (h(t + 7,)e™720) (26)

and A is the set of sinusoid frequencies associated with the product modulators in the

system representation. Thus, the filter output 2(¢) is given by

2(t) = Y [2(1)e”™] % galt), (27)
peA
and the input-output cyclic spectrum relation for a periodic time-variant filtering is found
to be

= T Golf +a/2C(f — af2)S20* ( ;e _5_+_7> |

G.¥€EA 2

——
o
(0.4]

N

5.2 MULTIPLICATION

Another common signal processing operation is the multiplication (or mixing) of two

waveforms. Assuming two statistically independant time-series z(¢) and s(¢), then
2(t) = z(t)s(t) (29)

is the product of the two waveforms. It is found that the input-output cyclic spectrum

relation for waveform multiplication is [22]
/ ZS" )$B(f — v)dv . (30)

5.3 TIME SAMPLING

Since digital processors are widely used, the signal z(t) is typically transformed into
samples {z(nT,)}. To calculate the cyclic autocorrelation function of z(t), an asymmetric

definition is required, i.e., {17]
Do fa) - —Jj2ranT. ~jmakT,
R2(KT,) £ (2(nT, + kT,)z"(nT,)e~2memT) gimokT: (31)

where (-} is the discrete-time averaging over n and the correction factor e~#"**T: is used to
make the asymmetric definition agreed with the symmetric one. From (31), the expression
for the discrete cyclic spectrum is

o o]

S2(f) = 3 Re(KT,)e~ 72T+ (32)

—-—Q0
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6.0 APPLICATIONS OF THE CYCLOSTATIONARY MODEL

When a signal z(t) is found to be cyclostationary, it reveais the existence of correlation
between widely separated spectral components (with separation equal to a). This is called
spectral redundancy.

The objective of all cyclic spectral analysis applications is to exploit the redun-
dancy of a signal to improve the accuracy and reliability of information extracted from
the measurements of corrupted signals. The degree of enhancement obtained in com-
parison to performance of more commonly chosen methods (which ignores this spectral
redundancy) is dependant on the severity of the signal corruption as well as on the degree
of cyclostationarity (DCS) exhibited by the signal z(t). As discussed briefly in section
3.1, spectral redundancy is not usually observed in noise (noise is not cyclostationary)
but does appear in most manmade signals. In addition, in cases where there are multiple
signals of interest plus interferers (signals not of interest), overlap may occur in both time
and frequency, but it is very likely that the spectral redundancy functions of those signals
do not overlap providing they have distinct cycle frequencies a. Thus, signals occupying
the same spectral band but having different carrier frequencies and/or pulse rates or key-
ing rates can be distinguished. In brief, this makes signal selectivity possible, a very basic
feature of spectral redundancy.

In a practical situation, a signal can be modeled as being

I
z(t) = Y silt) +n(t), (33)

i=1

where the set {s;(t),2=1,...,1} is formed by both signals of interest and interference
(statistically independant of each other) and where n(t) is the background noise. The
cyclic spectrum of z(t) is then given by

[
S3(f) =2 So(f) + Sa(f)- (34)
i=1
However, if the only signal having the particular cycle frequency ay is sk(t), then
S+ = S(f) (35)

assuming At — oo (measurement time).

In this section, some applications of the cyclostationary model will be analyzed.
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6.1 DETECTION

One of the most difficult tasks in communications systems, particularly in tactical radio
communications where the environment is highly corrupted by noise and interference, is
to detect the presence of one or more signals of interest. The cyclic spectrum permits
signal detection in this type of environment. Because of its signal selectivity capabiiity,
the spectral-correlation plane approach as a general approach to interception gives great
flexibility and more importantly tolerates unknown and changing noise level and interfer-
ence activity. As shown in (35), provided n(t) is not cyclostationary and all interferers
do not exhibit cyclostationarity at ay, it is possible to detect the presence of a signal at
that particular cycle frequency. At the same time, classifying the modulation type of this
particular signal type will be a lot easier since all noise and interference will have been
removed from the signal.

Assuming the incoming signal z(t) is modeled as in (33), a list of all cycle
frequencies a; where S2*(f) # 0 (defined earlier as the cycle spectrum) along with a
value representative * of S¥*( f) should be recorded. A threshold may be used in order to

circumvent the problem of false detection due to measurement noise.

6.2 CLASSIFICATION

The problems of tolerance to noise and interference have long been encountered in mod-
ulation recognition systems. Some of these systems are commercialized and show good
results for signal to noise ratios down to 20 dB but this is not sufficient in a typical environ-
ment where lower signal to noise ratios are often encountered and automatic modulation
recognition is still required. After having detected the signals of interest (and cycle spec-
trum) as explained in section 5.1, classification according to modulation type becomes
a matter of applying and/or developing cyclic spectrum modulation pattern recognition
rules to almost clean signals. Also, the number of signals will be found at the same time.
This new approach has not been well explored yet but looks promising.

To this date, a great amount of work has been carried out to find the theoretical
cyclic spectrum expected for a number of different modulation types (see [17], [15], and
[16]). The results are briefly stated here.

o Amplitude Modulation (AM):

z(t) = a(t) cos (27 fot + ¢o) (36)

'A value representative of S2*(f) means either the maximum value or the integral of the cyclic
spectrum at the particular cycle frequency .




Sa(f + fo) + 3Sa(f = fo) ,a=0
S.(f)etizée ,a=32fo (37)
, otherwise

1
4
sz(f) =1}
0

o Pulse Amplitude Modulation (PAM):

[ ]

z(t) =Y a(nTo)p(t — nTo +€) (38)
LP(f +af2)P*(f - af2)

i oo Sa+1‘—"; ( _n ) gl2mae a= X
n,m=-~oco0 <3 To ~ 2Tp ’ To (39)

S;(f) =
0 , otherwise

where p(t) is a deterministic finite-energy pulse and ¢ is a fixed pulse-timing phase pa-
rameter. Also note that {a(nTp)}, is a random sequence assumed to be purely stationary

and k is an integer value.
o Quadrature Amplitude Modulation (QAM):

z(t) = a(t)cos(2r fot + &(t))

= cs(t) cos(27 fot) + sn(i) sin(27 fot) (40)
1 - 1, =
Sg(f) = 3 [Scs(f) S.m(f)] j: 2]Scs,sn(f)r y & :t2f0 (41)
0 , @ # 07 124 # :t2f0
where S¢sn(f)r is the real part of the cross-spectrum between cs(¢) and sn(t).
o Phase Modulation (PM) and Frequency Modulation (FM):
z(t) = cos(2m fot + #(t)) (42)
IR{0.(1,-1)e?o7}  a=0
1 =
Re(r) =4 1o o= (43)
JU3(1,1) ya=—2fg
0 y & # 2f0v a # 0

where W, (w;,w2) is the joint characteristic function for ¢(t + 7/2) and ¢(t — 7/2) defined
as

U (w1,w2) 2 llrn _/ I [B(t+7/2)wite(t=7/2)wr] gy (44)
T J-1/2

Using the cyclic Wiener relation in (7), one can find the expression for S¥(f). Note that
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#(t) is assumed to contain no periodicity. The difference between PM and FM can be
found when making assumptions about the type of incoming signal. For instance, if for a
PM signal ¢(¢) = y(t) (typical of speech, zero-mean purely stationary Gaussian waveform)
where y(t) has the spectral density given by

So , 300 < |f] <3300 ;
Sn=1 > /! (15)
0 , otherwise
then for a FM signal, ¢(¢) is given by
t
(t) = /0 e Pt=¥y(u)du, 0 < B < 300. (46)
o Digital Pulse Modulation:
oo M
= 2. 2 n(n)pm(t—nTy) (47)
n=-00 m=1 )
Defining S; and S, as
5 L5
= - )P (f — a/2
1 i 3 Palf +a/2)B5(f — o2
M
— 21| . “(f —
S = 2mr L; Pa(f +a/2 )] [Z Pi(f a/?)]
a n
] — —
[ Ty n—z—oo 6 2 TO )} ’
then
51 -8 = £
S . (43)
0 ya# 0and a # T -
o Amplitude Shift Keying (ASK):
z(t) = a(t) cos(2r fot + ¢o) (49)
where -
a(t)= ) anp(t — nTy - to) (50)

n=-—0o0
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and

sef) = g {[PU+ R+ PP+ R- D30+ 1)

+P(f = fo+ PN (f = fo= )82 = fo) e

+P(f + % + fo)P*(f — g — fo)3ote( f)eilnlatso)to+asal

+P(f+5 = )P (f = 5 + fo) S22 (plenlirtemiaunly  (51)

where S2(f) is the discrete-time correlation of a(t).

Other cyclic spectrum expressions for modulation types such as Phase Shift Key-
ing (PSK), non-coherent and coherent Frequency Shift Keying (FSK), Frequency-Hopped
FSK, Direct Sequence PSK, and others can be found in [17] and [10]. More experiments
are required to analyze the cyclic spectrum of other modulation types to gain a better
knowledge of the best way to classify them. This will be something to investigate in the

near future (using simulated modulated signals as well as real off air data).

6.3 PARAMETER ESTIMATION

The carrier frequencies and phases, keying rates and phases, or pulse rates and phases
are found almost directly from the cyclic spectrum once the signals have been detected
and classified. For instance, almost all modulation types having a carrier frequency f.
generate a spectral line at a cycle frequency a = 2f,. Also, the keying rate or pulse
rate is found when the cyclic spectrum exhibits spectral lines at multiples of fy, i.e., at
a = Tio where k is an integer. Other parameters such as bandwidth are quite easy to
estimate once the cycle frequency of the signal and the modulation type are known and
the signal spectrum has been extracted from background noise and interference. Finally,

synchronization parameters such as frequencies and phases can be estimated as well.

6.4 TDOA ESTIMATION

The problem of resolving time-difference-of-arrival (TDOA) of overlapping signals is elim-
inated with the utilization of the cyclic spectrum, again because of its signal selectivity
property in the a domain. Denoting TDOA'’s as {f;}, the incoming signal at one recep-

tion platform as r(t), the incoming signal from the other platform as w(t), then z(t) is




modeled as in (33) and w(t) is given by

w(t) =Y si(t —t;) + m(t) (52)
=1
where m(t) is the background noise received at the second platform. Provided s;(t) is the
only signal having the cycle frequency «a, then t; is found to be an accurate estimate of
the TDOA in the expression

Se(f) = S, (f)e imUralDt (53)

Here, the problem of resolving the TDOA'’s of overlapping signals has been circumvented
(cf [9] and {10]).

6.5 SPATIAL FILTERING

An other important application of the cyclic spectral analysis concerns spatial filtering.
It is found in [1] that it is possible to blindly and adaptively extract a signal of interest
with only knowledge of the cycle frequencies & of the signals.

With enough elements in an array to make the nulling possible, a linear combiner
will restore spectral redundancy in its input at a particular cycle frequency « and it will
adapt to null out all other signals not having that cycle frequency. This will increase the
degree of cyclostationarity at the output. Therefore, the system will null out all signals
other than s;(¢) at the output.

An algorithm developed by Dr. Agee (see [1] and {2]) is called the Spectral Self-
Coherence Restoral (SCORFE) algorithm. The greatest advantage of this technique is that
it accomplishes the nulling without any knowledge of the reception characteristics of the

array (no calibration).

6.6 DIRECTION FINDING

For direction finding purposes, a narrowband model is considered, i.e.,

z(t) = a(d:)si(t) + n(t) (54)

i=1

where x is the received data vector of dimension r, and a(6;) is the direction vector

associated with the :** received signal s;(t) specified by the calibration data for the array.
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The particular interest in using
R2(7) = RS (1) = a(6)R2 (1)a™ (6, (55)

which is the r x r cyclic autocorrelation matrix, to solve a(§;) is that unlike the con-
ventional autocorrelation matrix, advanced knowledge of the correlation properties of the
noise R,(0) and interference R,,(0) for ¢ # k is not required. As a result, the constraint
imposed by conventional methods that the number of elements in the array must exceed
the total number of signals, I/, impinging on the array is avoided. Also, better spatial
resolution is achieved because the signals are resolved in a instead of the direction of
arrival. A number of approaches to signal selective DF have been derived so far ([40], [1],
and (37}).

6.7 FREQUENCY-SHIFT FILTERING FOR SIGNAL EXTRACTION

A means for filtering a signal based on the cyclic spectral correlation function is called
Frequency-Shift Filtering (FRESH filtering). This technique allows separation of / spec-
trally overlapping signals if they have the same keying rate but different phases or carrier
frequencies. In fact, it is a time-variant filtering technique which can also be viewed as a
combination of several frequency shifting and filte-':. | sperations. It is a technique well
suited for adaptive co-channel interference removal and adaptive signal extraction (see
(3], [17], and [T7]).

A number of other applications have been considered so far [17] which are still
under iuvestigations, however, the applications described briefly above should give a gen-
. eral idea of the capability of the cyclostationarity model in communications systems. An
important thing to recall is that a cyclic spectral analyzer provides more information than

the conventional spectrum analyzer.

7.0 CONCLUSION

In this report, the cyclic spectral analysis as a general tool for signal spectral analysis
was shown to be much superior to more conventional spectral analysis. Three major
advantages have been pointed out. First, its discriminatory capability enables signal sep-
aration of spectrally overlapping signals not distinguishable in the conventional spectrum.
Second, the cyclic spectrum provides more information about the signal and is therefore
a richer domain for signal analysis. Third, the theory of spectral correlation is a much

more complete mechanism for modeling communication signals in several applications. A
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working examrple showing two BPSK signals with different parameters and one Gaussian
noise signal has demonstrated most of these advantages.

The most important results on spectral correlation theory have also been pro-
vided but without detailed proofs. Mathematical definitions for cyclic autocorrelation
function, cyclic spectrum, cycle frequency, spectral and temporal correlation coefficients,
and degrees of cyclostationarity have been summarized. Subsequently, the results of fil-
tering, multiplication, and time sampling operations on the cyclic spectrum have been
formulated.

Exploitation of signals spectral redundancy to improve the accuracy and reliabil-
ity of information extracted from the measurements of corrupted signals is the objective of
all cyclic spectral analysis applications. Among others, detection, classification, parame-
ter estimation, TDOA estimation, direction finding, and frequeacy-shift filtering for signal
extraction have all been considered as very promising applications. An important topic
not discussed in details in this paper concerns the problems related to measurements of
spectral correlation. Clearly, computational complexity of cyclic spectral analysis far ex-
ceeds that of conventional spectral analysis. However, it is recognized in [34] and [35] that
time-smoothing algorithms will result in more computationally efficient algorithms than
those involving spectral smoothing especially when dealing with discrete-time signals. At
least, one of these efficient algorithms called the Strip Spectral Correlation Algorithm
(SSCA) will be implemented shortly and then compared to the basic spectral-smoothing

algorithm given in [17] which was used to produce the figures of Section 2.
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